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We present an asymptotic study on the phase diagram of two-dimensional nematic liquid crystal
polymer monolayers with the Onsager intermolcular potential. In contrast to the case of Maier-
Saupe interaction potential where there is only one nematic branch, our analysis reveals that there
are infinite many nematic branches in the case of the Onsager interaction potential. An asymptotic
expression is derived for each nematic branch. For small polymer concentration the isotropic branch
is the only equilibrium state. As the polymer concentration is increased, nematic branches appear
one by one, starting with the first nematic branch. The polymer orientation distribution of the first
nematic branch has a two fold rotational symmetry, the second branch has a four fold rotational
symmetry, the third branch has a six fold rotational symmetry, and so on. To determine the stability
of these nematic branches, we derive an asymptotic expression of free energy for each nematic
branch. We find that free energies of all nematic branches are lower than that of the isotropic
state, and the first nematic branch has the lowest free energy among all branches. To further
investigate the stability and meta-stability, we carry out asymptotic analysis of the free energy when
each nematic state is perturbed. We conclude that (1) the isotropic branch is stable until the first
nematic branch appears, (2) the first nematic branch is stable, and (3) the isotropic branch (after
the appearance of the first nematic branch) and all other nematic branches are unstable when
perturbed by the leading Fourier mode in the first nematic branch. We also present a spectrum
numerical method for calculating nematic branches and free energies. The spectrum method yields
results that are accurate up to the computer precision. All of asymptotic results are confirmed by
numerical results obtained with the spectrum method.

Keywords: Nematic Polymers, Phase Diagram, Isotropic-Nematic Phase Transition, Onsager
Intermolecular Potential, Maier-Saupe Intermolecular Potential, Smoluchowski
Equation, Free Energy of a Polymer Ensemble, Stability of an Equilibrium State.

1. INTRODUCTION

Microstructures play a significant role in understanding
the phase transition for dispersions of rodlike macro-
molecules in liquid crystal polymers with or without exter-
nal field. In 1949 Onsager developed the first theory that
demonstrated an isotropic-nematic (IN) phase transition
due to steric interactions alone.33 His theory was based
on a virial expansion which ended up with a compli-
cated nonlinear integral equation for the orientation distri-
bution function. By using a nematic potential (“Onsager
potential”) and choosing an appropriate trial function for
the orientation distribution function, Onsager was able
to argue that when the polymer concentration is high
enough, there is a transition from a uniform isotropic

∗Author to whom correspondence should be addressed.

state to an orientationally ordered prolate nematic state.
The Onsager theory is valid for dilute polymer solutions
because the virial expansion is terminated at the second
virial coefficients.

Many theories have been formulated after Onsager’s
work. For an introduction to the theoretical advances of liq-
uid crystalline polymers we refer the reader to the review
paper by Rey and Denn.34 Among many theories the Doi-
Hess kinetic model6�20 is gaining popularity in recent years
for describing various properties of liquid crystalline poly-
mers (LCPs) in a solvent. This well-known kinetic the-
ory was first developed by Doi and Edwards to describe
spatially homogeneous flows of rodlike LCPs. The sig-
nificance of the Doi-Hess theory lies on the fact that
it models the ensemble of rodlike macromolecules using
a meso-scale probability density function. Thus, it can
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accommodate the isotropic state, the nematic state, and
the phase transition between them. In the Doi-Hess kinetic
model, the intermolecular interaction is usually modeled
by the Maier-Saupe potential because of the simplicity of
the Maier-Saupe potential. The Maier-Saupe potential is an
approximation to the Onsager potential. In the Maier-Saupe
potential, the effect of the polymer ensemble on one poly-
mer rod is represented by the second moment of the prob-
ability density. Thus, with the Maier-Saupe potential, an
equilibrium state is completely determined by the second
moment, which motivates the idea of following the evolu-
tion of only the second moment with various closures. A lot
of studies have been devoted to the Doi-type kinetic theory
and its approximation with various closures based on the
Maier-Saupe potential and the Onsager potential (for exam-
ple, Refs. [3–5, 8–17, 19, 23–28, 30, 35–38, 41, 43–49]).
However, almost nothing can be found in the literature for
the theoretical analysis of the Doi-Hess kinetic model with
the Onsager interaction potential.

Recently the authors carried out a numerical study on
the equilibrium states of rigid polymer rods with the
Onsager potential.40 The primary purpose of the current
paper is to extend the work in Ref. [40] and conduct
a theoretical study on the full Doi-Hess kinetic theory
with the Onsager interaction potential. We confine our
attention to the two-dimensional liquid crystal polymers
which is physically motivated by monolayer films in
microelectronics and optoelectronics. Rigid, rodlike liq-
uid crystalline polymers have been of considerable interest
in thin films because of their stability, nonlinear optical
properties, and role as alignment layers for liquid crys-
tal displays.29 Experiments have shown that the dynamic
behavior of monolayer nematic polymers can be quanti-
tatively captured by the simple molecular model of Doi
and Hess for both extensional and simple shear flows.29�32

Numerical and theoretical studies on the two-dimensional
liquid crystal polymers have also been conducted
by many researchers.1�2�7�18�21–23�26–28�30�31�39�42�44�47�49 Our
work extends these previous papers to the Doi-Hess theory
with the Onsager intermolecular potential.

This paper proceeds as follows. First, the mathematical
framework of the two-dimensional Doi-Hess model with
the Onsager potential is described in Section 2, and the con-
nection between the Onsager potential and the Maier-Saupe
potential is briefly discussed. In Section 3, an asymptotic
analysis is carried out to calculate the nematic branches
of polymers with the Onsager potential. It turns out that
there are infinitely many nematic branches for polymers
with the Onsager potential. A spectrum method is described
in Section 4. The spectrum method is capable of reduc-
ing numerical errors to the computer precision. Numerical
results obtained with the spectrum method are treated as
the exact solution and are used to confirm the asymptotic
results. In Section 5, the stability of the nematic branches
is analyzed using free energy calculations. Finally, in
Section 6, we summarize the results obtained in this paper.

2. MATHEMATICAL FORMULATION OF THE
TWO DIMENSIONAL DOI-HESS KINETIC
MODEL WITH THE ONSAGER POTENTIAL

We briefly review the two-dimensional mathematical for-
mulation of the Doi-Hess kinetic theory for rigid rodlike
nematogenic molecules immersed in a viscous solvent.6�20

In this theory, one considers a test molecule in a sea
of others and models the interactions between molecules
by a mean-field potential. The ensemble of polymer rods
is described by an orientation probability density func-
tion (PDF). In the absence of flow, the orientation prob-
ability density function is governed by the Smoluchowski
equation:

��

�t
=D �

�u
·
(

1
kBT

�V

�u
�+ ��

�u

)
(1)

where �	u� t
 is the probability density function that a poly-
mer rod has orientation u at time t, u is a unit vector
denoting the polymer rod orientation, �/�u is the gradient
operator on the unit sphere,6 D the rotational diffusivity
constant, kB the Boltzmann constant, T the absolute tem-
perature and V the mean-field potential representing the
interactions between polymer rods.

In the two-dimensional space, the orientation of a poly-
mer rod can be described by an angle �. The orientational
vector of a polymer rod is given by u= 	cos�� sin �
. The
Onsager intermolecular potential describes the interaction
between the test polymer rod and all other polymer rods.
The Onsager potential has the form

U	�
≡ VOnsager

kBT
= b

∫ 2�

0
�sin	�̃−�
��	�̃
d�̃ (2)

where b is the strength of the Onsager potential which
is proportional to the normalized polymer concentration
and is inversely proportional to the absolute temperature,
and �	�
 the probability density function of the orientation
angle �. For the convenience of discussions below, we use
U	�
 to denote the Onsager potential normalized by the
factor kBT . It should be pointed out that the Maier-Saupe
intermolecular potential has a similar form as the Onsager
potential with the kernel �sin	�̃−�
� in (2) being replaced
by �sin	�̃− �
�2 = 	1− cos 2	�̃−�

/2. The Maier-Saupe
potential has the form

U	�
 ≡ VMS
kBT

= b
∫ 2�

0

1− cos 2	�̃−�

2

�	�̃
d�̃

= b

2
− b

2

[
cos 2�

∫ 2�

0
cos 2�̃�	�̃
d�̃

+ sin 2�
∫ 2�

0
sin 2�̃�	�̃
d�̃

]
(3)

In the Maier-Saupe potential (3), the effect of �	�̃
 is com-
pletely specified by two quantities

∫ 2�
0 cos 2�̃�	�̃
d�̃ and

2 J. Comput. Theor. Nanosci. 7, 1–18, 2010
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∫ 2�
0 sin 2�̃�	�̃
d�̃. In other words, if these two quantities

are given, then the Maier-Saupe potential is completely
determined without knowing the probability density �	�̃
.
In contrast, the Onsager potential (2) depends on the whole
function of the probability density �	�̃
. This property of
the Onsager potential causes significant mathematical dif-
ficulties for theoretical analysis.

In the current study of the two dimensional Doi-Hess
kinetic model, we take the advantage that the probability
density �	�
 is a periodic function. We consider the Fourier
series expansion of the probability density function �	�
:

�	�
= 1
2�

+
	∑
k=1

	ak cosk�+bk sin k�
 (4)

where the constant term being 1/	2�
 is dictated by the
fact that the total probability is one:

∫ 2�
0 �	�
d� = 1.

Below, we will use the Fourier series of �	�
 to calculate
the Fourier expansion of the normalized Onsager potential
U	�
. We start with some mathematical preparations:∫ 2�

0
�sin��cosk�d�

=
∫ �

0
sin�cosk�d�−

∫ 2�

�
sin�cosk�d�

=
∫ �

0
sin�cosk�d�−

∫ �
0

sin	2�−�
cos	2k�−k�
d�

= 2
∫ �

0
sin�cosk�d�

=



2

k+1
− 2
k−1

=− 4
k2−1

� for k even

0� for k odd
(5)

∫ 2�

0
�sin��sink�d� =

∫ �
0

sin�sink�d�−
∫ 2�

�
sin�sink�d�

=
∫ �

0
sin�sink�d�

−
∫ �

0
sin	2�−�
sin	2k�−k�
d�=0

(6)

With the help of (4), (5) and (6), we write the normalized
Onsager potential as

U	�
 = b
∫ 2�

0
�sin	�̃−�
��	�̃
d�̃

= b
∫ 2�−�

0−�
�sin�̃��	�̃+�
d�̃

= b
∫ 2�

0
�sin�̃��	�̃+�
d�̃

= b
∫ 2�

0
�sin�̃�

[
1

2�
+

	∑
k=1

	ak cosk	�̃+�


+bk sin k	�̃+�


]
d�̃

= b
∫ 2�

0
�sin�̃�

[
1

2�
+

	∑
k=1

	ak cosk�̃ cosk�

−ak sin k�̃ sin k�

]
d�̃

+b
∫ 2�

0
�sin�̃�

	∑
k=1

	bk sin k�̃ cosk�

+bk cosk�̃ sin k�
d�̃

= 4b
2�

−4b ·
	∑
j=1

[
a2j

	2j
2 −1
cos 2j�

+ b2j

	2j
2 −1
sin 2j�

]
(7)

For mathematical convenience, we introduce

c2j ≡
4b a2j

	2j
2 −1
� d2j ≡

4b b2j

	2j
2 −1
(8)

We use c2j and d2j as unknowns, and treat ak and bk as
functions of c2j and d2j . Since the intermolecular interac-
tion potential drives polymer rods only through its deriva-
tive, a constant term in the potential will not change the
dynamics. We drop the constant term in (7) and use the
new variables c2j and d2j to write the Onsager potential as

U	�
=−
	∑
j=1

	c2j cos 2j�+d2j sin 2j�
 (9)

The equilibrium probability density of Smoluchowski
equation (1) is given by the Boltzmann distribution:

�	�
 = 1
Z

exp�−U	�
�

= 1
Z

exp
( 	∑
j=1

	c2j cos 2j�+d2j sin 2j�

)

(10)

where Z is the partition function given by

Z =
∫ 2�

0
exp�−U	�
�d�

=
∫ 2�

0
exp

( 	∑
j=1

	c2j cos 2j�+d2j sin 2j�

)
d� (11)

Recall that we started with the Fourier series expansion of
�	�
 with coefficients aj and bj . The Fourier coefficients
with even indices, a2k and b2k, can be expressed in terms
of c2k and d2k from (8).

a2k =
1

4b
�	2k
2 −1�c2k� b2k =

1
4b
�	2k
2 −1�d2k (12)

Below we use (10) to show that the Fourier coefficients
of �	�
 with odd indices are zero. The probability density
�	�
 given in (10) satisfies

�	�+�
= �	�
 (13)
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With the help of (13), we have

a2k+1 = 1
�

∫ 2�

0
cos�	2k+1
���	�
d�

= 1
�

∫ �
0

cos�	2k+1
���	�
d�

+ 1

�

∫ 2�

�
cos�	2k+1
���	�
d�

= 1
�

∫ �
0

cos�	2k+1
���	�
d�

+ 1
�

∫ �
0

cos�	2k+1
�+���	�+�
d� = 0

(14)

Similarly, one can verify that

b2k+1 =
1
�

∫ 2�

0
sin�	2k+1
���	�
d� = 0 (15)

Next we show that U	�
 can be made an even function of
� by shifting the coordinate system. That is, we can make
b2k = 0 for all k by a single shifting. We start by using
relation (12) to express function �	�
 in terms of function
U	�
 and its derivatives.

�	�
= 1
2�

+ 1
4b
�U

′′
	�
+U	�
� (16)

The equilibrium probability density function �	�
 is also
linked to the normalized Onsager potential U	�
 through
the Boltzmann relation

�	�
= 1
Z

exp�−U	�
� (17)

Combining (16) and (17), we obtain a differential equation
for U	�
.

U
′′
	�
=−U	�
+ 4b

Z
exp�−U	�
�− 4b

2�
(18)

(18) is a second order differential equation. To determine
the solution of a second order differential equation, we need
to specify two initial conditions. Let �0 be the location at
which �	�
 attains its global maximum. It follows immedi-
ately from (17) that the normalized Onsager potential U	�

attains its global minimum at �0. Without loss of general-
ity, we assume �0 = 0 (one can always shift the coordinate
system to make �0 = 0). At the location of the global max-
imum, we have

U	0
= U0� U
′
	0
= 0 (19)

We use (19) as the initial conditions for differential equa-
tion (18). It is straightforward to verify that both differential
equation (18) and initial conditions (19) are invariant under
the change of variable �→ −�. Therefore, we conclude
that U	�
 is an even function

U	�
= U	−�
 (20)

Consequently, from (9) we have d2k = 0 and U	�
 is sim-
plified to

U	�
=−
	∑
k=1

c2k cos 2k� (21)

The next task is to derive a (nonlinear) system for Fourier
coefficients c2k. Relation (12) provides one set of equations
for Fourier coefficients a2k and c2k. To derive another set
of equations for a2k and c2k, we calculate the Fourier coef-
ficients of �	�
 using the expression of �	�
 given in (10)

a2k =
1
�

∫ 2�

0
cos 2k��	�
d�

= 1
�

·
∫ 2�

0 cos 2k� exp�−U	�
�d�∫ 2�
0 exp�−U	�
�d�

= 1
�

·
∫ 2�

0 cos 2k� exp �
∑	
i=1 c2i cos 2i��d�∫ 2�

0 exp �
∑	
i=1 c2i cos 2i��d�

(22)

Combining (12) and (22), we arrive at a nonlinear system
for coefficients �c2k�.∫ 2�

0 cos 2k� exp �
∑	
i=1 c2i cos 2i��d�∫ 2�

0 exp �
∑	
i=1 c2i cos 2i��d�

= �

4b
�	2k
2 −1�c2k

(23)
Since the Boltzmann relation establishes a one-to-one cor-
respondence between the probability density �	�
 and the
Onsager potential U	�
 (if we set the constant term to
zero in the Fourier expansion of the Onsager potential), we
only need to solve for the Onsager potential. In a prop-
erly selected coordinate system, the Onsager potential is an
even function and its Fourier coefficients satisfy c2k+1 = 0
and satisfy nonlinear system (23). The nonlinear system
(23) is the key governing equation in our study. Below we
will solve it first asymptotically and then numerically with
a very accurate numerical method.

3. PHASE DIAGRAM OF NEMATIC
POLYMERS WITH THE ONSAGER
POTENTIAL

We now solve nonlinear system (23) to obtain the phase
diagram of nematic polymers with the Onsager interaction
potential. We carry out asymptotic analysis for the case
where the amplitude of the normalized Onsager potential is
small. Since the probability density and the Onsager poten-
tial are related by the Boltzmann distribution, small ampli-
tude in the Onsager potential implies that the probability
density is not far from being a constant. That is, we do
asymptotic analysis on the nematic states that are close to
the isotropic state. Mathematically, we assume the Fourier
coefficients of the Onsager potential have the expansions

c2j = ��2j +�2�2j +O	�3
 (24)

where � is a small parameter, and �2j and �2j are coef-
ficients independent of �. At this point, the meaning of �

4 J. Comput. Theor. Nanosci. 7, 1–18, 2010
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is not precisely defined yet. Later we will re-define � pre-
cisely. Expanding the numerator and denominator on the
left side of (23) in powers of � leads to

∫ 2�

0
cos2k�exp

[ 	∑
i=1

	��2i+�2�2i
cos2i�

]
d�

=
∫ 2�

0
cos2k�

[
1+

	∑
i=1

	��2i+�2�2i
cos2i�

+ 1
2
�2

( 	∑
ı=1

�2icos2i�

)2

+O	�3



d�

=	��2k+�2�2k
�

+ 1
2
�2
∫ 2�

0
cos2k�

( 	∑
i=1

�2icos2i�

)2

d�+O	�3


(25)

and

∫ 2�

0
exp

[ 	∑
i=1

	��2i+�2�2i
 cos 2i�

]
d�

=
∫ 2�

0

[
1+

	∑
i=1

	��2i+�2�2i
 cos 2i�+O	�2


]
d�

= 2��1+O	�2
� (26)

respectively. In general, we expect the Onsager potential
U	�
 changes with the normalized polymer concentra-
tion b, which suggests that b is not independent of �. We
assume b has the expansion

b = b	0
�1+�b	1
+O	�2
� (27)

Substituting these results into Eq. (23), and first looking
at only the coefficients of the first order 	O	�

 terms, we
obtain

�
�2k

2
= � �

4b	0

�	2k
2 −1��2k (28)

which in turn yields

�2k

{
1− �

2b	0

�	2k
2 −1�

}
= 0 (29)

Below we consider possible solutions of (29) in several
cases.
• Case 1: If �2 = 0, then in (29) for k = 1 we must have

1− �

2b	0

�22 −1�= 0

which yields b	0
 = 		22 −1
/2
� = 	3/2
�. Conse-
quently, for k > 1, we have 1 − 	�/2b	0

�	2k
2 − 1� =
	22 − 	2k
2
/	22 −1
 < 0. It follows from (29) that �2k = 0
for k > 1. Recall that the meaning of � in the expansion is
not precisely defined yet. When �2 = 0, we re-define c2 =
�2�+�2�

2 +O	�3
 as the new �, which is equivalent to

setting �2 = 1 and �2 = 0. Substituting �2 = 1 and �2k = 0
for k > 1 into (25), we have

RHS of (25)

= 	��2k+�2�2k
�+



�2�

4
� k = 2

0� otherwise

+O	�3
 (30)

In the calculation of coefficients �2k above, we keep only
the first order terms in Eq. (23). Now in the calculation of
coefficients �2k, we keep both the first order and the second
order terms. We first calculate b	1
. For k = 1, Eq. (23)
becomes

�+O	�3


1+O	�2

= �

1+�b	1
+O	�2


which yields b	1
 = 0. For k= 2, (23) provides us an equa-
tion for �4:

�2�4 +�21/4+O	�3


1+O	�2

= 42 −1

22 −1
· �2�4

1+O	�2


which leads to �4 = 1/16. For k > 2, Eq. (23) takes the
form

�2�2k+O	�3


1+O	�2

= 	2k
2 −1

3
· �2�2k

1+O	�2


which gives us �2k = 0 for k > 2. Therefore, the nematic
state that has a small non-zero coefficient for cos 2� in the
Fourier expansion of U	�
 is described by

U	�
=−� cos 2�− �
2

16
cos 4�+O	�3


b = 3
2
�	1+O	�2

 (31)

To calculate the coefficient of the second order term in the
expansion of b, we keep one more term in the expansions
of (25) and (26):

RHS of (25) = ��+�3 5�
32

+O	�4
� k = 1 (32)

RHS of (26) = 2�
(

1+ 1
4
�2 +O	�3


)
(33)

An equation for b	2
 can be derived by substituting results
(32) and (33) into Eq. (23) for k = 1:

�+5/32�3 +O	�4


1+1/4�2 +O	�3

= �

1+b	2
�2 +O	�3


which gives us b	2
 = 3/32 and thus, we obtain

b = 3
2
�

(
1+ 3

32
�2 +O	�4


)
(34)
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It is desirable to express the normalized Onsager potential
U	�
 as a function of the normalized polymer concentra-
tion b. For that purpose, we solve for � from (34) and
arrive at

�=±
√
b− 	3/2
�
	9/64
�

(35)

U	�
=−� cos 2�− �
2

16
cos 4�+O	�3
 (36)

where the sign ± means that there are two equivalent
branches of nematic state near b = 	3/2
�. These two
branches are equivalent to each other via a 90 degree rota-
tion. The equilibrium probability density is given by

�	�
= 1
2�

+� 3
4b

cos 2�+�2 15
64b

cos 4�+O	�3
 (37)

where � is given in (35). This is the first nematic branch of
polymer ensembles with the Onsager potential. Before we
plot the first nematic branch, we need to decide on how to
represent the nematic state as a function of b. We could plot
coefficients 	c2� c4� " " " � c2j � " " "
 as functions of b. But that
plot is a curve in a space of infinite dimension, which is
difficult to illustrate. To represent the phase diagram using
a simple two-dimensional plot, we plot the leading non-
zero coefficient in 	c2� c4� " " " � c2j � " " "
. This approach of
plotting the leading non-zero Fourier coefficients is in, fact,
consistent with what has been done in the case of nematic
polymers with the Maier-Saupe interaction potential. For
the Maier-Saupe potential, c2 is the only possible non-
zero Fourier coefficient and other Fourier coefficients are
always zero because by definition the Maier-Saupe poten-
tial contains only the cos 2� term. In contrast, in general the
Onsager potential contains all cos 2j� terms where j goes
from 1 to infinity. For the onsager potential, any member in
set 	c2� c4� " " " � c2j � " " "
 can be the leading non-zero coef-
ficient. For the first nematic branch of polymer ensembles
with the Onsager potential, c2 is the leading non-zero coef-
ficient. The behavior of this nematic branch is shown in
Figure 1.

In Figure 1, the vertical coordinate c2 is a measure of
the magnitude of the Onsager potential for the first nematic
branch. The equilibrium probability density is related to
the Onsager potential by the Boltzmann distribution. Thus,
c2 also measures how far the nematic state deviates from
the isotropic state. In this sense, c2 can be viewed as an
unnormalized order parameter for the first nematic branch.
In Figure 1, the solid line represents a very accurate numer-
ical solution, which is treated as the exact solution, and
the dashed line represents the asymptotic solution obtained
above. The numerical method will be discussed in the next
section.

For polymer ensembles with the Maier-Saupe interac-
tion potential, the polymer orientation distribution is often
illustrated by plotting in polar coordinate system a func-
tion f 	�
 showing the alignment of polymer rods along the
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Fig. 1. The first nematic branch of polymer ensemble with the Onsager
interaction potential. This nematic branch intersects with the isotropic
branch, at 	3/2
�. The horizontal coordinate b is the normalized poly-
mer concentration; the vertical coordinate c2 is the coefficient of the
cos 2� term (the leading non-zero term for the first nematic branch) in
the Fourier expansion of the normalized Onsager potential.

direction with angle �. Function f 	�
 is defined as the root-
mean-square of the inner-product between polymer rods in
the ensemble and the direction �.

f 	�
 =
√∫ 2�

0
		cos�� sin �
 · 	cos �̃� sin �̃

2�	�̃
d�̃

=
√∫ 2�

0
cos2	�− �̃
�	�̃
d�̃

=
√∫ 2�

0

1+ cos 2	�− �̃

2

�	�̃
d�̃

=
√

1
2
+ 1

2
cos 2�

∫ 2�

0
cos 2�̃�	�̃
d�̃

=
√

1
2
+ 1

2
a2� cos 2� =

√
1
2
+ 3�

8b
c2 cos 2� (38)

In Figure 2, we plot in polar coordinate system probabil-
ity density �	�
 and function f 	�
 of a typical equilibrium
state on the first nematic branch. Note that in some litera-
ture, the graph of function f 	�
 was mistakenly identified
as an ellipse. This misconception was probably caused by
the fact that the function form of f 2	�
, when written in
terms of the Cartesian coordinates 	x� y
, has an elliptic
form. Using x = cos� and y = sin �, we have

f 2	x� y
 = 1
2
+ 3�

8b
c2 cos 2�

=
(

1
2
+ 3�

8b
c2

)
cos2 �+

(
1
2
− 3�

8b
c2

)
sin2 �

=
(

1
2
+ 3�

8b
c2

)
x2 +

(
1
2
− 3�

8b
c2

)
y2 (39)
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θ θ

ƒ(θ)

ρ(θ)

Fig. 2. Probability density �	�
 and function f 	�
 shown in polar coor-
dinate system for a typical equilibrium state on the first nematic branch.

It can be shown that the coefficient 	1/2− 	3�/	8b

c2 is
always positive. So indeed f 2	x� y
 has an elliptic form.
But the graph of f 	x� y
 with the constraint x2 + y2 = 1 is
not exactly an ellipse although it looks not very different
from an ellipse.

In Figure 2, the graph of probability density �	�
 is sig-
nificantly different from an ellipse. It has a dumbbell shape.
Actually, the graph of probability density �	�
 does not
always have a dumbbell shape. For small value of c2, that is,
for b sufficiently close to 	3/2
�, the graph of �	�
 looks
like an ellipse in the sense that it is convex everywhere.
In particular, it is convex at � = 	1/2
�. The curvature of
�	�
 is given by

&	�
= �2	�
+2	�′	�

2 −�	�
�′′	�

	�2	�
+ 	�′	�

2
3/2 (40)

At � = 	1/2
� and for small value of c2 = �, we have

�

(
1

2
�

)
= 1

2�
− 1

2�
�+O	�2


�′
(

1
2
�

)
= 0

(41)

�′′
(

1
2
�

)
= 1

2�
4�+O	�2


&

(
1
2
�

)
= 1
�		1/2
�


	1−5�
+O	�2


Thus, for small values of c2 = �, the curvature &		1/2
�

is positive and the graph of �	�
 is convex. The results
shown in Figure 1 demonstrate that the asymptotic solution
is still valid even for fairly large �. Suppose the asymp-
totic expression of &		1/2
�
 given in (41) is valid for
moderately large �. We can use the asymptotic formula
to determine at what value of � the curvature changes
sign from positive to negative. Setting &		1/2
�
 = 0,
we obtain �= 0"2, which is approximately the value at
which �	�
 change from being convex to being concave

at � = 	1/2
�. This has been confirmed in our numerical
simulations. Once �	�
 becomes concave at � = 	1/2
�,
the graph of �	�
 takes the shape of a dumbbell.

• Case 2: If �2 = 0 but �4 = 0, then in (29) for k = 2 we
must have

1− �

2b	0

�42 −1�= 0

which yields b	0
 = 	42 −1
/2� = 	15/2
�. Conse-
quently, for k > 2, we have 1 −�/	2b	0

�	2k
2 − 1� =
	42 − 	2k
2
/	42 −1
 < 0. It follows from (29) that �2k = 0
for k > 2. As we did in case 1, when �4 = 0, we re-define
c4 = �4�+�4�

2 +O	�3
 as the new �, which is equiva-
lent to setting �4 = 1 and �4 = 0. Substituting �4 = 1 and
�2k = 0 for k = 2 into (25), we have

RHS of (25)

= 	��2k+�2�2k
�+



�2�

4
� k = 4

0� otherwise

+O	�3
 (42)

As in case 1, once we finish calculating coefficients �2k,
we retain both the first order terms and the second order
terms in Eq. (23) to calculate coefficients �2k. We first cal-
culate b	1
. For k = 2, Eq. (23) simply can be written as

�+O	�3


1+O	�2

= �+O	�3


1+�b	1

which immediately implies b	1
 = 0. For k = 4, (23) gives
an equation for �8:

�2�8 +�2	1/4
+O	�3


1+O	�2

= 82 −1

42 −1
· �2�8

1+O	�2


which yields �8 = 	5/64
. For k � �2�4�, Eq. (23) takes
the form

�2�2k+O	�3


1+O	�2

= 	2k
2 −1

42 −1
· �2�2k

1+O	�2


which, along with �4 = 0, gives us �2k = 0 for k = 4.
Therefore, the nematic state, which has zero coefficient for
cos 2� but has a small non-zero coefficient for cos 4� in the
Fourier expansion of U	�
, is given by

U	�
=−� cos 4�− 5
64
�2 cos 8�+O	�3


b = 15
2
�	1+O	�2



(43)

To calculate the coefficient of the second order term in the
expansion of b, we retain one more term in the expansions
of (25) and (26)

RHS of (25) = ��+�3 21�
128

+O	�4
� k = 2 (44)

RHS of (26) = 2�
(

1+ 1
4
�2 +O	�3


)
(45)

J. Comput. Theor. Nanosci. 7, 1–18, 2010 7



R
E
S
E
A
R
C
H
A
R
T
IC
L
E

Phase Diagram of Nematic Polymer Monolayers with the Onsager Interaction Potential Wang and Zhou

An equation for b	2
 can be found by substituting results
(44) and (45) into Eq. (23) for k = 2:

�+ 	21/128
�3 +O	�4


1+ 	1/4
�2 +O	�3

= �

1+b	2
�2 +O	�3


which gives b	2
 = 11/128 and therefore, we obtain

b = 15
2
�

(
1+ 11

128
�2 +O	�4


)
(46)

In order to express the normalized Onsager potential U	�

as a function of the normalized polymer concentration b,
we solve for � from (46) and arrive at

�=±
√
b− 	15/2
�
	165/256
�

(47)

U	�
=−� cos 4�− 5
64
�2 cos 8�+O	�3
 (48)

Again, the sign ± indicates that there are two equivalent
branches of nematic state near b = 	15/2
�. These two
branches are equivalent to each other via a 90 degree rota-
tion. The equilibrium probability density can be written as

�	�
= 1

2�
+�15

4b
cos 4�+�2 315

256b
�2 cos 8�+O	�3
 (49)

where � is given in (47). This is the second nematic branch
for polymer ensembles with the Onsager potential. The
behavior of this nematic branch is shown in Figure 3.

In Figure 3, the vertical coordinate c4 measures the mag-
nitude of the Onsager potential for the second branch. The
equilibrium probability density is related to the Onsager
potential by the Boltzmann distribution. Thus, c4 also

25 30 35 40
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c 4

Exact solution

Asymptotic solution

15
2

π

Fig. 3. The second nematic branch of polymer ensembles with the
Onsager interaction potential. This nematic branch intersects with the
isotropic branch at 	15/2
�. Here the horizontal coordinate b denotes
the normalized polymer concentration whereas the vertical coordinate
c4 is the coefficient of the cos 4� term (the leading non-zero term for
the second nematic branch) in the Fourier expansion of the normalized
Onsager potential.

reflects how far the nematic state deviates from the
isotropic state. In this sense, c4 can be thought of as an
unnormalized order parameter for the second branch. In
Figure 3, the solid line corresponds to a very accurate
numerical solution, which is taken as the exact solution, and
the dashed line denotes the asymptotic solution obtained
above. Note that for the second nematic branch, the mean-
ing of the order parameter is different from that of the first
nematic branch. For the first nematic branch and for the
case of the Maier-Saupe potential, the order parameter mea-
sures the alignment of polymer rods along one direction
(the direction along which the alignment is maximized).
For the second nematic polymer, as we will see below, the
order parameter c4 measures the alignment of polymer rods
with two perpendicular directions.

Figure 4 depicts in polar coordinate system the probabil-
ity density �	�
 of a typical equilibrium state on the second
nematic branch. Function f 	�
, the root-mean-square of the
inner-product between polymer rods and the direction �, is
not shown. In fact, for the second nematic branch, c2 = 0
and f 	�
= const. More specifically,

f 	�
=
√

1
2
+ 3�

8b
c2 cos 2� =

√
1
2

(50)

Figure 4 shows that the probability density �	�
 has
four fold symmetry and the polymer rods are equally likely
being aligned along the horizontal direction and being
aligned along the vertical direction.

• Case 3: If �2 = �4 = 0 but �6 = 0, then in (29) for k= 3
we must have

1− �

2b	0

�62 −1�= 0

which yields b	0
 = 		62 −1
/2
� = 	35/2
�. Conse-
quently, for k > 3, we have 1− 	�/	2b	0


�	2k
2 − 1� =
	62 − 	2k
2
/	62 −1
 < 0. It follows from (29) that �2k = 0
for k > 3. Since �6 = 0, we re-define c6 = �6�+�6�

2 +
O	�3
 as the new �, which is equivalent to setting �6 = 1

θ

ρ(θ)

Fig. 4. Probability density �	�
 shown in polar coordinate system for
a typical equilibrium state on the second nematic branch.
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and �6 = 0. Substituting �6 = 1 and �2k = 0 for k = 3 into
(25), we have

RHS of (25)

= 	��2k+�2�2k
�+



�2�

4
� k = 6

0� otherwise

+O	�3
 (51)

Now we continue to calculate coefficients �2k. For that pur-
pose, we keep both the first order terms and the second
order terms in Eq. (23). We first calculate b	1
. For k = 3,
Eq. (23) simplifies to

�+O	�3


1+O	�2

= �+O	�3


1+�b	1


which gives b	1
 = 0. For k= 6, (23) yields an equation for
�12.

�2�12 +�2	1/4
+O	�3


1+O	�2

= 122 −1

62 −1
· �2�12

1+O	�2


which implies �12 = 35/432. For k � �3�6�, Eq. (23)
becomes

�2�2k+O	�3


1+O	�2

= 	2k
2 −1

62 −1
· �2�2k

1+O	�2


which, along with �6 = 0, yields �2k = 0 for k = 6. There-
fore, the nematic state that has zero coefficients for cos 2�
and for cos 4� but has a small non-zero coefficient for
cos 6� in the Fourier expansion of U	�
 can be expressed as

U	�
=−� cos 6�− 35
432

�2 cos 12�+O	�3


b = 35
2
�
(
1+O	�2


) (52)

To compute the coefficient of the second order term in the
expansion of b, we maintain one more term in the expan-
sions of (25) and (26)

RHS of (25) = �+�3 143�
864

+O	�4
� k = 3 (53)

RHS of (26) = 2�
(

1+ 1
4
�2 +O	�3


)
(54)

An equation for b	2
 can be derived by substituting results
(53) and (54) into Eq. (23) for k = 3:

�+ 	143/864
�3 +O	�4


1+ 	1/4
�2 +O	�3

= �

1+b	2
�2 +O	�3


which gives us b	2
 = 73/864. So putting all these together,
we find

b = 35
2
�

(
1+ 73

864
�2 +O	�4


)
(55)

To express the normalized Onsager potential U	�
 as a
function of the normalized polymer concentration b, we
solve for � from (55) and obtain

�=±
√
b− 	35/2
�
	2555/1728
�

(56)

U	�
=−� cos 6�− 35
432

�2 cos 12�+O	�3
 (57)

The sign ± indicates that there are two equivalent branches
of nematic state near b = 	35/2
�. These two branches
are equivalent to each other via a 90 degree rotation. The
equilibrium probability density is given by

�	�
= 1
2�

+�35
4b

cos 6�+�2 5005
1728b

cos 12�+O	�3


(58)
where � is given in (56). This is the third nematic branch for
polymer ensembles with the Onsager potential. The behav-
ior of this nematic branch is shown in Figure 5.

In Figure 5, the vertical coordinate c6 gives a measure of
the magnitude of the Onsager potential for the third branch
while the equilibrium probability density is related to the
Onsager potential by the Boltzmann distribution. Thus, c6

also determines how far the nematic state deviates from
the isotropic state. In this sense, c6 can be treated as an
unnormalized order parameter for the third branch. As we
will see below, for the third branch, the order parameter c6

actually measures the alignment of polymer rods with three
directions. In Figure 5, the solid line denotes a very accu-
rate numerical solution, which is treated as the exact solu-
tion, and the dashed line represents the asymptotic solution
obtained above.

In Figure 6, we plot in polar coordinate system probabil-
ity density �	�
 of a typical equilibrium state on the third

60 70 80 90 100
0

1

2

3

b

c 6

Exact solution

Asymptotic solution

35
2

π

Fig. 5. The third nematic branch of polymer ensembles with the Onsager
interaction potential. This nematic branch intersects with the isotropic
branch at 	35/2
�. The horizontal coordinate b is the normalized polymer
concentration; the vertical coordinate c6 is the coefficient of the cos 6�
term (the leading non-zero term for the third nematic branch) in the
Fourier expansion of the normalized Onsager potential.
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θ

ρ(θ)

Fig. 6. Probability density �	�
 shown in polar coordinate system for
a typical equilibrium state on the third nematic branch.

nematic branch. Function f 	�
, the root-mean-square of
the inner-product between polymer rods and the direction
�, is not shown. For nematic branches other than the first
nematic branch, we have c2 = 0 and f 	�
= const. Figure 6
demonstrates that the probability density �	�
 has six fold
symmetry and the polymer rods are equally likely being
aligned along three directions that are uniformly distributed
on the unit circle.

The process of finding nematic solutions can be contin-
ued indefinitely. Polymer rod ensemble with the Onsager
intermolecular potential has infinitely many nematic
branches. The first nematic branch intersects with the
isotropic branch at b = 	3/2
�, the second nematic branch
at b = 	15/2
�, the third nematic branch at b = 	35/2
�.
In general, if �2 = �4 = · · · = �2	j−1
 = 0 but �2j = 0, then
in (29) for k = j we must have

1− �

2b	0

�	2j
2 −1�= 0

which yields b	0
 = 			2j
2 −1
/2
�. Consequently,
for k > j , we have 1 − �/	2b	0

�	2k
2 − 1� =
		2j
2 − 	2k
2
/		2j
2 −1
 < 0. It follows from (29) that
�2k = 0 for k > j . Since �2j = 0, we re-define c2j =
�2j�+ �2j�

2 +O	�3
 as the new �, which is equivalent
to setting �2j = 1 and �2j = 0. Substituting �2j = 1 and
�2k = 0 for k = j into (25), we have

RHS of (25)

= 	��2k+�2�2k
�+


�2�

4
� k = 2j

0� otherwise
+O	�3
 (59)

To calculate coefficients b	1
 and �4j , we keep both the first
order terms and the second order terms in Eq. (23). For
k = j , Eq. (23) becomes

�+O	�3


1+O	�2

= �+O	�3


1+�b	1


which gives b	1
 = 0. For k= 2j , (23) leads to an equation
for �4j .

�2�4j +�2	1/4
+O	�3


1+O	�2

= 	4j
2 −1
	2j
2 −1

· �2�4j

1+O	�2


which yields �4j = 	1/12
 · 		2j
2 −1
/		2j
2
. For k �
�j�2j�, Eq. (23) has the form

�2�2k+O	�3


1+O	�2

= 	2k
2 −1
	2j
2 −1

· �2�2k

1+O	�2


which, along with �2j = 0, implies that �2k = 0 for k = 2j .
Therefore, the nematic state that has zero coefficients for
cos 2� through cos 2	j−1
� but has a small non-zero coef-
ficient for cos 2j� in the Fourier expansion of U	�
 can be
described mathematically by

U	�
=−� cos 2j�− 1
12

· 	2j

2 −1

	2j
2
�2 cos 4j�+O	�3


b = 	2j
2 −1
2

�
(
1+O	�2


)
(60)

We would like to express the normalized Onsager potential
U	�
 as a function of the normalized polymer concentra-
tion b. To achieve that goal, we need to express the small
parameter � in terms of b. Since the first order term in the
expansion of b with respect to � has zero coefficient, to
reveal the dependence of b on �, we need to find the leading
term with non-zero coefficient. We re-visit the expansions
of (25) and (26) and retain one more term in the expansions

RHS of (25) = �+�3 	4	2j

2 −1


24	2j
2
�+O	�4
� k = j

(61)

RHS of (26) = 2�
(

1+ 1
4
�2 +O	�3


)
(62)

Substituting results (61) and (62) into Eq. (23) for k = j
gives us

�+		4	2j
2−1

/	24	2j
2
�3+O	�4


1+	1/4
�2+O	�3

= �

1+b	2
�2+O	�3


Solving for b	2
 from the equation above yields

b	2
 = 2	2j
2 +1
24	2j
2

b = 	2j
2 −1
2

�

(
1+ 2	2j
2 +1

24	2j
2
�2 +O	�4


)
(63)

Now we use expansion (63) to express � in terms of the
normalized polymer concentration b and arrive at

�=±
√

b− 			2j
2 −1
/2
�
			2j
2 −1
	2	2j
2 +1

/	48	2j
2
�

(64)

U	�
=−� cos 2j�− 1
12

· 	2j

2 −1

	2j
2
�2 cos 4j�+O	�3


(65)
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Again, the sign ± implies that there are two equivalent
branches of nematic state near b= 			2j
2 −1
/2
�. These
two branches are equivalent to each other via a 90 degree
rotation. Once the Onsager potential is calculated, the equi-
librium probability density is given by

�	�
 = 1
2�

+�	2j

2−1

4b
cos2j�

+�2 		2j

2−1
	4	2j
2−1


48	2j
2b
cos4j�+O	�3
 (66)

where � is a function of the normalized polymer concen-
tration b given in (64). This is the j-th nematic branch of
polymer ensembles with the Onsager interaction potential.

4. NUMERICAL METHOD

The asymptotic analysis in the previous section tells us
two things: (i) there are infinitely many nematic branches
for polymer ensembles with the Onsager interaction poten-
tial; and (ii) the j-th nematic branch intersects with the
isotropic branch at b= 			2j
2 −1
/2
�. The approximate
expression of each nematic branch near the intersection
with the isotropic branch is obtained in the asymptotic anal-
ysis. In order to give a more accurate description of each
nematic branch both near and away from the intersection
with the isotropic branch, we need to solve (23) for an arbi-
trary value of b. In Eq. (23), b is the parameter and the
infinite sequence of coefficients 	c2� c4� " " " � c2j � " " "
 is the
unknown. From physical point of view, it is desirable to
treat 	c2� c4� " " " � c2j � " " "
 as functions of b. In the phase
diagrams presented in the previous section, for practical
reason, we show only the leading non-zero Fourier coeffi-
cient in 	c2� c4� " " " � c2j � " " "
 as a function of b. Specifically,
suppose

c2	b
= · · · = c2	j−1
	b
= 0� c2j 	b
= r	b

In phase diagrams, we plot r	b
 as a function of b and
indicate that r	b
 is the coefficient for cos 2j�. Mathemat-
ically, however, it is difficult to solve for r	b
 in Eq. (23)
for a given value of b. There are two mathematical dif-
ficulties: (i) as in the case of nematic polymers with the
Maier-Saupe potential, r	b
 is not a single-valued func-
tion of b and; (ii) function r	b
 is not defined at all for
b < 	3�/2
, that is, nematic state does not exist at all
before the first nematic branch appears. Practically, for each
nematic branch, it is more convenient to treat r as the inde-
pendent variable and treat b as a function of r instead.
This convenient mathematical formulation has also been
adopted for the study of nematic polymers with the Maier-
Saupe potential.3�45–47 For the case of the Maier-Saupe
potential, the value of r completely determines an equi-
librium state. We believe that for the case of the Onsager
potential, this is still true: the value of r completely deter-
mines an equilibrium state on each given nematic branch.

This assertion has been confirmed in our numerical simu-
lations. But a rigorous mathematical proof for the assertion
is still open.

Now we present the numerical method we use to solve
non-linear system (23). For the convenience of presenta-
tion, we introduce the vector notation

C= 	c2� c4� " " " � c2k� " " "
 (67)

Below we describe an iterative method for calculating the
first nematic branch. Similar procedure can be employed to
calculate other nematic branches. As we discussed above,
in our new mathematical formulation, we treat c2 = r as
the independent variable and treat b and 	c4� " " " � c2k� " " "

as functions of r . In the numerical method, r is the input,
and b and 	c4� " " " � c2k� " " "
 are the output. More precisely,
we start with a given value of r and proceed to calculate the
corresponding values of b	r
 and 	c4	r
� " " " � c2k	r
� " " "
.
Here is an outline of the iterative method:
• Step 0: We set n = 0 and set C	0
 = 	r�0� " " " �0� " " "
.
Here n is the counter recording the number of iterations
completed so far and C	0
 is the starting vector for iteration.
• Step 1: We use C	n
 = 	c

	n

2 � c

	n

4 � " " " � c

	n

2k � " " "
 to

calculate

Q
	n

2k =

∫ 2�
0 cos 2k� exp�

∑	
i=1 c

	n

2i cos 2i��d�∫ 2�

0 exp�
∑	
i=1 c

	n

2i cos 2i��d�

If Q	n
2k is the solution of Eq. (23), then for k = 1, Eq. (23)
becomes

Q
	n

2 = 3�

4b
r

Recall that in our mathematical formulation, r (i.e., coef-
ficient c2) is the independent variable and b is a function
of r . We set the value of b to satisfy this equation.
• Step 2: We calculate the new value of b

b	n
 = 3�

4Q	n
2

r

• Step 3: For k > 1, we use Eq. (23) with the values of
Q
	n

2k and b	n
 to update coefficient c2k:

c
	n+1

2k = 4Q2k

	4k2 −1
�
b	n
� for k > 1

• Step 4: We update the coefficient vector.

C	n+1
 = 	r� c	n+1

4 � " " " � c

	n+1

2k � " " "


• Step 5: We use ��C	n+1
−C	n
�� to determine if the itera-
tion has converged. If ��C	n+1
−C	n
�� is less than the given
tolerance, then we stop the iteration and output the most
recent coefficient vector C	n+1
 and b	n
 as the solution of
Eq. (23). Otherwise, we increase the counter by one (set
n= n+1) and repeat the iteration starting at Step 1.

J. Comput. Theor. Nanosci. 7, 1–18, 2010 11
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Fig. 7. Comparison of the first nematic branch for the Onsager poten-
tial and the only nematic branch for the Maier-Saupe potential.

Because the Smoluchowski equation is a diffusion equa-
tion we expect the probability density and the Onsager
potential to be smooth functions. For a smooth function,
the Fourier series expansion converges exponentially as
the number of terms included in numerical solutions is
increased. Therefore, numerical solutions accurate up to
the computer precision can be obtained using the numer-
ical method described above with only moderately large
number of Fourier terms included. The numerical results
are shown in Figures 1–6. Figure 7 compares the phase
diagram for the Onsager potential (showing only the first
nematic branch) and the phase diagram for the Maier-
Saupe potential. As shown in Figure 7, the Maier-Saupe
potential predicts that the isotropic to nematic phase tran-
sition occurs at b = 4 whereas the Onsager potential pre-
dicts that the isotropic to nematic phase transition occurs
at b = 	3/2
� ≈ 4"7124.

5. FREE ENERGY CALCULATION AND
STABILITY OF THE ISOTROPIC BRANCH
AND NEMATIC BRANCHES

In the Doi-Hess model, the polymer orientation distribu-
tion is described by the probability density �	�
. The free
energy of polymer orientation distribution �	�
 is

G	���
 ≡ Free energy of orientation distribution �	�


kBT

=
∫ 2�

0
�	�


(
log�	�
+ 1

2
U	�


)
d� (68)

where U	�
 is the normalized Onsage interaction potential

U	�
= b
∫ 2�

0
�sin	�̃−�
��	�̃
d�̃ (69)

For the isotropic branch, the Onsager potential is U	�
= 0,
the probability density is �	�
 = 1/	2�
 and the corre-
sponding free energy is

GIsotropic =− log	2�
 (70)

Note that in the expression for the Onsager potential
U	�
 = 0 we have dropped the constant term 4b/	2�
.
If we keep this constant term, then the free energy of
the isotropic state is GIsotropic = 	b/�
− log	2�
, which
increases linearly with the normalized polymer concentra-
tion b. Since the stability of an equilibrium state is deter-
mined by the free energy landscape at a fixed value of b,
dropping a b-dependent constant term will not change the
stability.

For an anisotropic orientation distribution (not necessar-
ily an equilibrium state), the Fourier series expansion of
probability density �	�
 and that of the normalized Onsager
potential U	�
 are related by

�	�
= 1
2�

+
	∑
j=1

a2j cos 2j�

U	�
=−
	∑
j=1

c2j cos 2j� (71)

c2j = a2j

4b
	2j
2 −1

Here it is important to point out that relation (71) is true
for all probability densities. In particular, the probability
density �	�
 does not have to be an equilibrium state. If
�	�
 is an equilibrium probability density, then in addition
to relation (71), we also have the Boltzmann relation

log�	�
=−U	�
− log	Z
=
	∑
j=1

c2j cos 2j�− log	Z


(72)
where the partition function Z is given by

Z =
∫ 2�

0
exp

( 	∑
j=1

c2j cos 2j�

)
d� (73)

The free energy of an equilibrium state is

G	���
 =
∫ 2�

0
�	�


(
1
2

	∑
j=1

c2j cos 2j�− log	Z


)
d�

= �

2

	∑
j=1

c2ja2j − log	Z


= �

8b

	∑
j=1

c2
2j 		2j


2 −1
− log	Z
 (74)

For the first nematic branch, the Onsager potential has the
form U	�
 = −	� cos 2�+ 	1/16
�2 cos 4�+ · · · 
 and the
partition function is

Z =
∫ 2�

0
exp

(
� cos 2�+ 1

16
�2 cos 4�+· · ·

)
d�

=
∫ 2�

0

(
1+ 1

2
�2 cos2 2�+ 1

2
· 1

162
�4 cos2 4�

+ 1
6
· 3

16
�4 cos2 2� cos 4�
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+ 1
24
�4 cos4 2�+· · ·

)
d�

= 2�
(

1+ 1
4
�2 + 25

1024
�4 +· · ·

)
(75)

The log partition function takes the form

log	Z
 = log	2�
+ log
(

1+ 1
4
�2 + 25

1024
�4 +· · ·

)

= log	2�
+
(

1
4
�2 + 25

1024
�4

)
− 1

2

(
1
4
�2

)2

+· · ·

= log	2�
+
(

1
4
�2 − 7

1024
�4

)
+· · · (76)

The free energy of an equilibrium state on the first nematic
branch is

GFirst =
�

8b

(
3�2+ 15

256
�4

)
−
(

1
4
�2− 7

1024
�4

)
−log	2�
+···

= 3�
8b

[
�2+ 5

256
�4−

(
�2− 7

256
�4

)
2b
3�

+···
]

−log	2�
 (77)

Using the fact that for the first nematic branch b = 	3�
/
2	1+ 	3/32
�2
, we obtain

GFirst =
3�
8b

[
�2+ 5

256
�4−

(
�2+ 17

256
�4

)
+···

]
−log	2�


= −3�
8b

· 12
256

�4−log	2�
+···

= 9�
512

· 1
b
�4−log	2�
+···

= − 9�
512

· 1
b

(
b−	3/2
�
	9/64
�

)2

−log	2�


+···<GIsotropic (78)

Since GIsotropic + log	2�
 = 0, for simplicity of presenta-
tion, we plot G+ log	2�
 as the free energy. Figure 8
shows the free energy of the first nematic branch as a
function of the normalized polymer concentration b. The
solid line represents a very accurate numerical solution
obtained using the numerical method described in the pre-
vious section, which is treated as the exact solution, and
the dashed line represents the asymptotic solution obtained
above. It is clear that the asymptotic solution is a very
good approximation to the exact solution over a very large
range of b. Actually, the difference between the asymptotic
solution and the exact solution will not increase when b is
increased further (see Fig. 9).

In Figure 8, the dotted line shows the free energy of the
isotropic branch. Notice that the free energy of the first
nematic branch is below the free energy of the isotropic

6 8 10 12

–1.5

–1

–0.5

0

b

G
+

lo
g 

(2
π)

Exact solution

Asymptotic solution

Fig. 8. Free energy of equilibrium state on the first nematic branch as
a function of the normalized polymer concentration b.

branch. The first nematic branch appears at b = 	3/2
�.
For b > 	3/2
� but close to 	3/2
�, the first nematic
branch is the only nematic branch. Therefore, the lower
free ehergy of the first nematic branch implies stability. For
b < 	3/2
�, the isotropic branch is the only solution. As a
result, for b < 	3/2
�, the isotropic branch is stable. The
stability of the isotropic branch for b > 	3/2
� will be ana-
lyzed later in this section.

For the j-th nematic branch, the Onsager poten-
tial has the form U	�
 = −	� cos 2j� + 		2j
2 −1
/
	12	2j
2
�2 cos 4j�+· · · 
 and the partition function is

Z =
∫ 2�

0
exp

(
� cos 2j�+ 	2j


2 −1
12	2j
2

�2 cos 4j�+· · ·
)
d�

=
∫ 2�

0

(
1+ 1

2
�2 cos2 2j�+ 1

2
· 		2j


2 −1
2

122	2j
4
�4 cos2 4j�

+ 3
6
· 	2j


2 −1
12	2j
2

�4 cos2 2j� cos 4j�

+ 1
24
�4 cos4 2j�+· · ·

)
d�

= 2�
(

1+ 1
4
�2 + 	4	2j


2 −1
2

9 ·64	2j
4
�4 +· · ·

)
(79)

The log partition function has the expression

log	Z
 = log	2�
+log
(

1+ 1
4
�2+ 	4	2j


2−1
2

9·64	2j
4
�4+···

)

= log	2�
+
(

1
4
�2+ 	4	2j


2−1
2

9·64	2j
4
�4

)

− 1
2

(
1
4
�2

)2

+···

= log	2�
+
(

1
4
�2− 2		2j
2+2
2−9

9·64	2j
4
�4

)
+···

(80)
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Fig. 9. Free energies of the first three nematic branches as functions
of the normalized polymer concentration b. The dotted line is the free
energy of the isotropic branch.

The free energy of an equilibrium state on the first nematic
branch is given by

Gj-th = �

8b

(
		2j
2−1
�2+ 	4	2j


2−1
		2j
2−1
2

9·16	2j
4
�4

)

−
(

1
4
�2− 2		2j
2+2
2−9

9·64	2j
4
�4

)
−log	2�
+···

= 		2j
2−1
�
8b

[
�2+ 4	2j
4−5	2j
2+1

9·16	2j
4
�4

−
(
�2− 2		2j
2+2
2−9

9·16	2j
4
�4

)

× 2b
		2j
2−1
�

+···
]
−log	2�


(81)

Using the fact that for the j-th nematic branch
b = 		2j
2 −1
/2�	1 + 	2	2j
2 +1
/	24	2j
2
�2 +
O	�4

, we obtain

Gj-th = 		2j
2 −1
�
8b

[
�2 + 4	2j
4 −5	2j
2 +1

9 ·16	2j
4
�4

−
(
�2 − 2		2j
2 +2
2 −9

9 ·16	2j
4
�4

)

× 2b
		2j
2 −1
�

+· · ·
]
− log	2�


= − 		2j

2 −1
�
8b

· 6	2j
2 +3
9 ·16	2j
2

�4 − log	2�
+· · ·

= −2	2j
4 − 	2j
2 −1
3 ·128	2j
2

� · 1
b
�4 − log	2�
+· · ·

= −2	2j
4 − 	2j
2 −1
384	2j
2

�

· 1
b

(
b− 			2j
2 −1
/2
�

			2j
2 −1
	2	2j
2 +1

/	48	2j
2
�

)2

− log	2�
+· · ·
< GIsotropic (82)

Figure 9 shows the free energy of the first three nematic
branches. It is clear that for all nematic branches, the free
energy is below that of the isotropic branch, which was
established analytically in (82) above. The first nematic
branch has the lowest free energy. The higher the index
the higher the free energy. The free energy of the second
nematic branch is above that of the first branch and the
free energy of the third nematic branch is above that of the
second branch and so on.

Figure 9 also demonstrates that the asymptotic expres-
sion (82) is valid for a very large range of b and valid for
all nematic branches. The asymptotic solution is derived
based on the assumption that the amplitude of the Onsager
potential is small. So it is still a mystery why the differ-
ence between the asymptotic solution and the exact solution
remains small as the amplitude of the Onsager potential
is increased over a very large range corresponding to the
increase in b. The mathematical explanation behind this
mystery will be investigated in a future study.

We use free energy calculation to study the stability of
the isotropic branch for b > 	3/2
� (i.e., after the first
nematic branch appears). The free energy diagram (Fig. 9)
suggests that the isotropic state is unstable for b > 	3/2
�.
To show the instability, it is sufficient to show that it is
unstable with respect to a perturbation of one particular
form. We consider a perturbation to the isotropic state of
the form

�	�
= 1

2�
	1++ cos 2�
 (83)

where + is a small parameter. The perturbed probability
density satisfies

∫	
0 �	�
d� = 1. Since in general the per-

turbed probability density is no longer an equilibrium state,
we cannot apply the Boltzmann relation. To calculate the
free energy of the perturbed probability density, we can-
not use the expression given in (74) for equilibrium states.
Instead we have to go back to the free energy expression
given in (68) for a general polymer orientation distribu-
tion (not necessarily an equilibrium state). Recall that the
Fourier series expansion of �	�
 and the Fourier series
expansion of U	�
 are connected by (71). The Onsager
potential corresponding to the perturbed probability den-
sity is

U	�
=−
( +

2�

)
· 4b

3
cos 2� =−+ 2b

3�
cos 2� (84)

The second component (interaction potential) of the free
energy expression given in (68) is
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∫ 	

0
�	�


(
1
2
U	�


)
d� =

∫ 	

0
�	�


(
−+ b

3�
cos 2�

)
d�

= − +

2�
·+ b

3�
·� = +2 b

6�
(85)

The first component (entropic contribution) of the free
energy expression given in (68) is

∫ 2�

0
�	�
log�	�
d�

=
∫ 2�

0
�	�
log	1++cos2�
d�−log	2�


=
∫ 2�

0
�	�


(
+cos2�− +

2

2
cos2 2�+O	+3


)
d�+Gisotropic

= +

2�
·+ ·�− +

2

2
· 1
2
−log	2�
+O	+3


= +
2

4
+O	+3
+Gisotropic (86)

The total free energy of the perturbed probability density is

G	+
=Gisotropic −
+2

6�

(
b− 3�

2

)
+O	+3
 (87)

For fixed b > 	3�
/2 and small +, we have G	+
 <
Gisotropic, which implies that for b > 	3�
/2 the isotropic
state is unstable.

So far we have concluded that (i) the isotropic state is the
only solution for b < 	3�
/2 and is stable for b < 	3�
/2;
(ii) the first nematic branch appears at b = 	3�
/2 and is
stable for b > 	3�
/2. The j-th nematic branch appears at
b = 			2j
2 −1
/2
�. Although the free energy diagram
(Fig. 9) above does not yield a definite conclusion on the
stability of the j-th nematic branch for j > 1, intuitively
it is reasonable to expect that for j > 1 the j-th nematic
branch is unstable. Below we use free energy calculation
to show the instability. Again, to conclude the instability,
we only need to identify one unstable model. For j > 1,
the unperturbed equilibrium probability density on the j-th
nematic branch has the form

�	e
	�
= 1
2�

+
	∑
k=2

a2k cos 2k� (88)

Specifically, the unperturbed probability density satisfies
a2 = 0. We consider a perturbation to the equilibrium prob-
ability density of the form

�	�
= �	e
	�
++ cos 2� (89)

where + is a small parameter. The perturbed probability
density satisfies

∫ 2�
0 �	�
d� = 1. To proceed with the free

energy calculation, we first look at the expansion of x · logx

	x+-
 · log	x+-
= x · logx+	logx+1
-+ 1
2
· 1
x
-2+· · ·

We expand the free energy as a power series of + and keep
only the constant terms and +2 terms. Note that all + terms
sum to zero because the unperturbed probability density
is an equilibrium. The expansion of the first component
(entropic contribution) of free energy is

∫ 2�

0

(
�	e
	�
++ cos 2�

)
log

(
�	e
	�
++ cos 2�

)
d�

=
∫ 2�

0

(
�	e
	�
 log�	e
	�


+ 1
2

1
�	e
	�


	+ cos 2�
2 +O	+3


)
d�

=
∫ 2�

0
�	e
	�
 log�	e
	�
d�

+ 1

4
+2
∫ 2�

0

1
�	e
	�


	1+ cos 4�
d�+O	+3
 (90)

The Onsager potential corresponding to the perturbed prob-
ability density is

U	�
= U	e
	�
−+ · 4b
3

cos 2� (91)

where U	e
	�
 is the Onsager potential corresponding to the
unperturbed equilibrium probability density given by

U	e
	�
=−
	∑
k=2

a2k

4b
	2k
2 −1

cos 2k� (92)

We expand the second component (the Onsager potential)
of the free energy.

1
2

∫ 2�

0

(
�	e
	�
++ cos 2�

)(
U	e
	�
−+ · 4b

3
cos 2�

)
d�

= 1
2

∫ 2�

0

(
�	e
	�
U 	e
	�
d�− 4b

3
+2 cos2 2�

)
d�

= 1

2

∫ 2�

0
�	e
	�
U 	e
	�
d�− 2�b

3
+2 (93)

Adding together the two components of the free energy, we
have

G	+
 = G	0
−+2�2

×
(

2b
3�

− 1
4�2

∫ 2�

0

1
�	e
	�


	1+cos4�
d�
)
+O	+3


(94)

For the j-th nematic branch, the equilibrium probability
density is

�	e
= 1
2�

(
1+�q2j cos 2j�+�2r2j cos 4j�+O	�3


)
(95)
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where � and coefficients q2j and r2j are given by

�=±
√

b− 			2j
2 −1
/2
�
			2j
2 −1
	2	2j
2 +1

/	48	2j
2
�

q2j = 2�
	2j
2 −1

4b

r2j = 2�
		2j
2 −1
	4	2j
2 −1


48	2j
2b

(96)

The reciprocal of the equilibrium probability density has
the expansion.

1
�	e
	�


= 2�	1−�q2j cos 2j�−�2r2j cos 4j�

+�2q2
2j cos2 2j�+O	�3

 (97)

We calculate the second term in the coefficient of +2 in
(94).

1
4�2

∫ 2�

0

1
�	e
	�


	1+ cos 4�
d�

=




1+�2

(
3
4
q2

2 −
1
2
r2

)
+· · · for j = 1

1−�1

2
q4 +�2 1

2
q2

4 +· · · for j = 2

1+�2 1
2
q2

2j +· · · for j > 2

(98)

The j-th nematic exists only for b > 			2j
2 −1
/2
�.
Thus, for j > 1 and for b near 			2j
2 −1
/2
� (i.e., for
nematic states of small amplitude �), we have

G	+
 < G	0
−+2�2

(
	2j
2 −1

3
−1+O	�


)
+O	+3


< G	0
−2+2�2 +O	+3
 < G	0
 (99)

which implies that for j > 1, the j-th nematic branch is
unstable. In the above, we have concluded the stability of
the first nematic branch based on the fact that it is the equi-
librium state with the lowest free energy. Nevertheless, it
is worthwhile to examine directly the stability of the first
nematic branch in the presence of a small perturbation. We
consider perturbed probability densities of the form

�	�
= �	e
	�
++
	∑
k=1

/2k cos 2k� (100)

It can be shown that including Fourier modes cos	2k+1
�
and/or sin k� in the perturbation will only increase the
free energy. Consequently, to derive the stability we only
need to consider perturbations consisting of Fourier modes
cos 2k�. The Onsager potential corresponding to the per-
turbed probability density is

U	�
= U	e
	�
−+
	∑
k=1

4b
	2k
2 −1

/2k cos 2k� (101)

where U	e
	�
 is the Onsager potential corresponding to the
unperturbed probability density. We expand the two com-
ponents of the free energy as a power series of +. Again,
we collect only the constant terms and +2 terms. The sum
of all + terms must be zero because the unperturbed prob-
ability density is an equilibrium state.

G	+
 =
∫ 2�

0
�	�


(
1
2
U	�
+log�	�


)
d�

=
∫ 2�

0

[
1
2
�	e
	�
U 	e
	�
−2b+2

( 	∑
k=1

/2kcos2k�

)

×
( 	∑
k=1

/2kcos2k�
	2k
2−1

)
+�	e
	�
log�	e
	�


+ 1
2

1
�	e
	�


+2

( 	∑
k=1

/2kcos2k�

)2]
d�+O	+3


= G	0
−2�b+2
	∑
k=2

/2
2k

	2k
2−1

+�2+2/2
2

(
1

2�2

∫ 2�

0

cos2 2�
�	e
	�


d�− 2b
3�

)

++2
∫ 2�

0

/2 cos2�
�	e
	�


( 	∑
k=2

/2kcos2k�

)
d�

+ 1
2
+2
∫ 2�

0

1
�	e
	�


( 	∑
k=2

/2kcos2k�
)2

d�+O	+3


≡ G	0
+�2+2T1+�2+2T2+�2+2T3

+�2+2T4+O	+3
 (102)

We calculate T1, T2, T3, and T4 one by one. T1 is bounded by

T1 =−2b
�

	∑
k=2

/2
2k

	2k
2 −1
≥−2b

�

	∑
k=2

/2
2k

15
=− 2b

15�

	∑
k=2

/2
2k

(103)

For b near 	3�
/2 (i.e., for nematic states of small ampli-
tude � on the first branch), we have

T1 ≈−1
5

	∑
k=2

/2
2k ≥−2

7

	∑
k=2

/2
2k

For b near 	3�
/2, we use 	b− 	3�
/2
= �2	9�
/64 and
result (98) to expand T2 with respect to �

T2 = /2
2

(
1

2�2

∫ 2�

0

cos2 2�
�	e
	�


d�− 2b
3�

)

≈ /2
2�

2

[(
3
4
q2

2 −
1
2
r2

)
− 3

32

]
(104)

At b = 	3�
/2 where the first nematic branch emerges
from the isotropic branch, coefficients q2 and r2 take the
values q2 = 1 and r2 = 5/16, which leads to[(

3
4
q2

2 −
1
2
r2

)
− 3

32

]∣∣∣∣
b=	3�
/2

= 1
2
>

3
7
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It follows that for b near 	3�
/2, T2 has a lower bound
given by

T2 ≥
3
7
�2/2

2

For b near 	3�
/2, the nematic equilibrium probability
density on the first branch has the expansion given in (95).
Using that expansion, we derive lower bounds for T3 and T4.

T3 = 1
�2

∫ 2�

0

/2 cos 2�
�	e
	�


( 	∑
k=2

/2k cos 2k�

)
d�

= − 2

�
�q2/2/4

∫ 2�

0
cos2 2� cos 4�d�+O	�2


≈ −�/2/4 >−4
7

√
�2/2

2 ·
√

	∑
k=2

/2
2k

(105)

T4 = 1
�2

1
2

∫ 2�

0

1
�	e
	�


( 	∑
k=2

/2k cos 2k�

)2

d�

= 1
�

∫ 2�

0

( 	∑
k=2

/2k cos 2k�

)2

d�+O	�


≈
	∑
k=2

/2
2k ≥

6
7

	∑
k=2

/2
2k

Substituting all these results into (102), we arrive at

G	+
 ≥ G	0
++2�
2

7

×
(

4
	∑
k=2

/2
2k−4

√
�2/2

2 ·
√

	∑
k=2

/2
2k+3�2/2

2

)

≥ G	0
++2�
2

7

(
2

	∑
k=2

/2
2k+�2/2

2

)
>G	0


(106)

which concludes the stability of the first nematic branch.

6. CONCLUSIONS

We have carried out an asymptotic analysis on the phase
diagram of nematic polymer monolayers with the Onsager
interaction potential. In the case of polymers with the
Maier-Saupe potential which is an approximation to the
Onsager potential, there is only one nematic branch. In
contrast, polymers with the Onsager interaction poten-
tial have infinitely many nematic branches. For small
b (the normalized polymer concentration), the isotropic
state is the only equilibrium. As b is increased, these
nematic branches appear one by one, starting with the first
nematic branch at b = 	3/2
�, then the second nematic
branch at b = 	15/2
�, then the third nematic branch
at b = 	35/2
�. The j-th nematic branch appears at
b = 		2j
2 −1
/2�. For nematic states on the first branch,

polymer rods are aligned along one direction, similar to
nematic states in the case of the Maier-Saupe potential.
Indeed, the phase diagram we obtained shows that the first
nematic branch is close to the only nematic branch for the
Maier-Saupe potential. For nematic states on the second
branch, the behavior of the polymer orientation distribu-
tion is drastically different. Instead of being aligned along
one direction, polymer rods are aligned with two perpen-
dicular directions and the probability density has four fold
symmetry. For nematic states on the j-th branch, polymer
rods are aligned with j directions uniformly distributed
on the unit circle, and the probability density has 2j fold
symmetry. We use the leading non-zero coefficient in the
Fourier expansion of the Onsager potential as an unnor-
malized order parameter. For the first nematic branch, the
order parameter measures the alignment along the director
(the direction along which the alignment is maximized),
similar to the case of the Maier-Saupe potential. For the
subsequent nematic branches, however, the order parameter
should be viewed as a measure on the deviation of the prob-
ability density from the isotropic distribution. We have fur-
ther designed a spectrum method for calculating the phase
diagram of nematic polymers with the Onsager potential.
The spectrum method is capable of producing numeri-
cal solutions that are accurate up to the computer preci-
sion, which we use as the exact solution. All asymptotic
results obtained in this paper are confirmed by the numer-
ical simulations. Although mathematically the asymptotic
analysis applies only to nematic states with the Onsager
potential of small amplitude, the comparison of the asymp-
totic results and numerical results demonstrates that the
asymptotic expressions derived are still valid for a very
large range of b, even when the amplitude of the Onsager
potential is very large. We have also performed free energy
calculations to study the stability of the isotropic branch
and the nematic branches. Before the appearance of the
first nematic branch at b = 	3/2
�, the isotropic state is
the only equilibrium state and is stable. For b > 	3/2
�,
the isotropic state is found to be unstable. The first nematic
branch emerging at b = 	3/2
� has a free energy lower
than that of the isotropic state, and thus is stable. All sub-
sequent nematic branches are found to be unstable when
perturbed by cos 2�, the leading Fourier mode in the first
nematic branch. The fundamental difference between the
Onsager potential and the Maier-Saupe potential is that
for j > 1 a perturbation of the Fourier mode cos 2j� in
the polymer orientation distribution will lead to a corre-
sponding Fourier mode in the Onsager potential while it
has no effect at all on the Maier-Saupe potential. In other
words, for j > 1 the Onsager potential responds to the
Fourier mode cos 2j� in the polymer orientation distribu-
tion while the Maier-Saupe potential does not. The j-th
nematic branch can be viewed as nematic state excited by
a perturbation of cos 2j� from the isotropic state. Although
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all nematic branches with j > 1 are unstable when per-
turbed by cos 2� and consequently is physically not observ-
able, the response of the Onsager interaction potential to the
Fourier mode cos 4� in the polymer orientation distribution
is still significant. If an external field of the form of cos 4�
is applied, it will induce an amplitude of cos 4� in the ori-
entation distribution and the amplitude will be enhanced by
the Onsager interaction potential.
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